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Nielsen–Thurston Classification Theorem

Any [f ] ∈ MCG(S) has a representative which is either

1. periodic: φn = id for some n 6= 0, or

2. reducible: φ(C ) = C for some 1-submanifold C , or

3. pseudo-Anosov: these exists two transverse measured
foliations (F s , µs) ,(Fu , µu) and a number λ > 1

f (F s , µs) = (F s , (1/λ)µs )

f (Fu , µu) = (Fu , λµu)
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Nielsen–Thurston Classification Theorem

Any [f ] ∈ MCG(S) has a representative which is either

1. periodic: φn = id for some n 6= 0, or

2. reducible: φ(C ) = C for some 1-submanifold C , or

3. pseudo-Anosov: these exists two transverse measured
foliations (F s , µs) ,(Fu , µu) and a number λ > 1

f (F s , µs) = (F s , (1/λ)µs )

f (Fu , µu) = (Fu , λµu)

Nielsen–Thurston Classification Problem
Given [f ] ∈ MCG(S) determine its Nielsen–Thurston type and,

⋆ if periodic: find its order,

⋆ if reducible: find its reducing curves,

⋆ if pseudo-Anosov: find (F s , µs), (Fu , µu) and λ > 1.



History

◮ Higher genus surfaces

⋆ Thurston (1970’s)& Mosher (1982): exponential.
⋆ Bestvina–Handel (1995): exponential, implemented by Toby

Hall for Dn and Peter Brinkman for higher genus surfaces.
⋆ Hamidi–Tehrani–Chen (1996): exponential.
⋆ Koberda–Mangahas (2014): exponential.
⋆ Bell–Webb (2016): NP and co–NP.

◮ Braids

⋆ Los (1993): quadratic.
⋆ Bernadete-Gutierrez–Nitecki (1995), Calvez (2013): quadratic

time algorithm, Garside structure of Bn is used.



Main Theorem

Theorem in progress (Margalit–Taylor–Strenner–Y.)

There exists a quadratic time algorithm to solve the
Nielsen–Thurston classification problem.

Theorem (Bell–Webb)

Polynomial time algorithm to determine the Nielsen–Thurston
classification type and find reducing curves, order and translation
length in the curve complex.



Basic Notions and Terminology
Throughout the talk we work on Dn.
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Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ A measured train track is assigned with a transverse measure
µ ∈ W(τ):

v
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µ(e1)+µ(e2)=µ(e3)
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Throughout the talk standard train tracks will be used.

⋆ Curves/measured foliations are carried by τ if they arise from
some transverse measure on τ :

collapse
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(F , µ) ≺ τ
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⋆ Curves/measured foliations are carried by τ if they arise from
some transverse measure on τ :

C and F can smoothly be embedded inside N (τ):
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⋆ Curves/measured foliations are carried by τ if they arise from
some transverse measure on τ :

MF(τ) → W(τ) is a homeomorphism.
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⋆ Train tracks define charts on MF and PMF .



Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ Similar definition when a train track is carried by another train
track:

τ

σ

σ ≺ τ



Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ τ is invariant if f (τ) ≺ τ .

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2f

f (τ) ≺ τ



Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ W
(

f (τ)
)

⊆ W(τ).

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2f

f (τ) ≺ τ



Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ By Brouwer Fixed Point Theorem f has a fixed point in W(τ).

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2f

f (τ) ≺ τ



Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ One way to create σ carried by τ is to split τ :
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Basic Notions and Terminology
Throughout the talk standard train tracks will be used.

⋆ One way to create σ carried by τ is to split τ :
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Charts on PMF

MCG induce piecewise linear action on PMF .



Piecewise Linear Action on PMF
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Piecewise Linear Action on PMF

MCG induce piecewise linear action on PMF .

σ1



Piecewise Linear Action on PMF

MCG induce piecewise linear action on PMF .

F
sF

s

F
u

F
u

σ1σ
−1
2

Action of a pseudo–Anosov mapping class on PMF .



Piecewise Linear Action on PMF

����

����F s

Fu

M1

M2

M3

Y
K

P

M1 → P → Y ◭
⊃,M3 → K → Y ◭

⊃,M2 → M



Dynnikov’s coordinates
Other coordinates could also be used.

α1

α2

β1 β2

ρ(L) = (−1; 0)

ai =
α2i−α2i−1

2
; bi =

βi−βi+1
2

a
′

i−1 =
[

ai−1(1 + bi−1) + ai bi−1
]

,

b
′

i−1 =

[

ai bi−1bi

ai−1(1 + bi−1)(1 + bi ) + ai bi−1

]

a
′

i =

[

ai−1ai bi

ai−1(1 + bi ) + ai

]

,

b
′

i =

[

ai−1(1 + bi−1)(1 + bi ) + ai bi−1

ai

]

;

����

��
��
��
��

F s

Fu

[

1 −1

1 0

]

[

1 −1

−1 2

]

[

0 1

−1 2

]

[

2 −1

1 0

]

[

0 1

−1 1

]

[

2 1

1 1

]

M1 → P → Y ◭⊃,M3 → K → Y ◭⊃,M2 → M



pseudo–Anosov action on PMF

Theorem (Thurston)

PMF has PIP structure (that is, locally described by integer
matrices).
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pseudo–Anosov action on PMF

Theorem (Thurston)

A pseudo-Anosov mapping class [f ] has two fixed points, and both
lie on PMF : [Fu , µu] and [F s , µs ].

��
��
��
��

����
F

s

Fu

[

1 −1

1 0

]

[

1 −1

−1 2

]

[

0 1

−1 2

]

[

2 −1

1 0

]

[

0 1

−1 1

]

[

2 1

1 1

]



pseudo–Anosov action on PMF

Theorem (Thurston)

Every point (other than [F s , µs ]) converges to [Fu , µu] on PMF
under [f ].
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pseudo–Anosov action on PMF

Goal
Compute the attracting linear region on PMF , the piece which
contains [Fu , µu] and on which [f ] acts linearly.
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pseudo–Anosov action on PMF

Goal
Compute the attracting matrix, the matrix acting on the attracting
linear region.
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pseudo–Anosov action on PMF

Goal
The way we actually find such attracting regions is to find an
invariant train track.
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pseudo–Anosov action on PMF

Approach

Use iteration.
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How fast is it to reach attracting linear pieces?

Thurston : “Every other point. . . tends rather quickly toward the
attracting point under iteration. . . ”

Experiment results from Toby Hall’s dynn.exe program



How fast is it to reach attracting linear pieces?

Thurston : “Every other point. . . tends rather quickly toward the
attracting point under iteration. . . ”

Example
Take

β = σ−1
1 σ−3

2 σ−5
3 σ4

1σ
−2
2 σ−1

3 σ1σ2σ
−2
3 (σ2σ

−2
3 )19σ−8

1 σ−1
3 σ−2

1 σ2
2σ

−1
3 σ−1

1 σ2σ3σ1σ
−1
2 σ−1

3 .

with λ ≈ 8.6× 1014.

◮ Train track program stops working.

◮ Attracting matrix is found in 0.001 seconds.











−68900596045753 200002959211464 146825523685804 −943752747512

−181490417757959 526825930446403 386751743244292 −2485930314639

−188609831321041 547491989409364 401923043417627 −2583447121425

76020009608848 −220669018174468 −161996823859176 1041269554295











Experiment results from Toby Hall’s dynn.exe program



How fast is it to reach invariant train tracks?

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks {Ti} and a curve c. Given
a pA mapping class [f ] there is an invariant train track τ such that

⋆ τ ≺ Ti for some i , and

⋆ f Q(c) ≺ τ for some 1 ≤ Q ≤ (constant)|χ(S)|2 (up to
diagonal extension).
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How fast is it to reach invariant train tracks?

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f ] be a pA mapping class. There is a constant
1 ≤ Q ≤ (constant)|χ(S)|2 such that if T is any train track with
(Fu , µu) ≺ T and slope(c) ≈ slope(T ) there is an invariant train
track τ such that

⋆ τ ≺ T, and

⋆ f Q(c) ≺ τ for some 1 ≤ Q ≤ (constant)|χ(S)|2 (up to
diagonal extension).



How fast is it to reach invariant train tracks?

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f ] be a pA mapping class. There is a constant
1 ≤ Q ≤ (constant)|χ(S)|2 such that if T is any train track with
(Fu , µu) ≺ T and slope(c) ≈ slope(T ) there is an invariant train
track τ such that

⋆ τ ≺ T, and

⋆ f Q(c) ≺ τ for some 1 ≤ Q ≤ (constant)|χ(S)|2 (up to
diagonal extension).

Proof. Key idea: “Slope of a curve” range of slopes of saddle
connections when pulled tight in the flat structure.
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How fast is it to reach invariant train tracks?

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f ] be a pA mapping class. There is a constant
1 ≤ Q ≤ (constant)|χ(S)|2 such that if T is any train track with
(Fu , µu) ≺ T and slope(c) ≈ slope(T ) there is an invariant train
track τ such that

⋆ τ ≺ T, and

⋆ f Q(c) ≺ τ for some 1 ≤ Q ≤ (constant)|χ(S)|2 (up to
diagonal extension).

Proof. Key idea: “Slope of a curve” range of slopes of saddle
connections when pulled tight in the flat structure.

F1. slope(f k(c)) = λ−2k slope(c)

F2. If Fu ≺ τ and slope(c) ≪ slope(τ), then c ≺ τ (up to
diagonal extension).
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

Agol cycle: If (Fu , µu) ≺ τ0 and τ0 ⇀ τ1 ⇀ τ2 · · · is a maximal
splitting sequence, then λτn+m = f (τn) for some n,m.
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

So τ0 splits to Agol cyle.
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

We use natural splitting sequences associated to f :
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

Apply the generators one by one and split after each generator until
the image train track is standard.
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

Split towards f Q(c).
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slope(f O(1)(c)) < λ−O(1)

τ0

τ

f (τ)

f

slope=1 c

F
s

F
u

C(S)

f Q(c)

τ0 ⇀ · · · τn has length O(n), f (τn) is carried by a standard train
track and f Q(c) ≺ τn.
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τ0

τn

f (τn)

f
c

F
s

F
u

C(S)

f Q(c)

τn may not be invariant because of oversplitting.
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τ0

τ ′

f (τ ′)

τn

f (τ)

f
c

F
s

F
u

C(S)

f Q(c)

Fold τn until possible which gives τ ′.
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τ0

τ ′

f (τ ′)

f
c

F
s

F
u

C(S)

f Q(c)

τ ′ is an invariant train track for f .
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τ0

τ ′

f (τ ′)

f
c

F
s

F
u

C(S)

f Q(c)

To compute the graph map apply the same splitting sequence to τ0
and check how f (τ ′) is carried.
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f Q(c)

To compute the graph map apply the same splitting sequence to τ0
and check how f (τ ′) is carried.
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To compute the graph map apply the same splitting sequence to τ0
and check how f (τ ′) is carried.
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τ ′

f (τ ′)

f
c

F
s

F
u

C(S)

f Q(c)

To compute the graph map apply the same splitting sequence to τ0
and check how f (τ ′) is carried.



How fast is it to reach invariant train tracks?

Let β = σ1σ
−1
2 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

��
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����F s

Fu

M1

M2

M3

Y
K

P

M1 → P → Y ◭
⊃,M3 → K → Y ◭

⊃,M2 → M
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Let β = σ1σ
−1
2 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2σ1σ
−1
2



How fast is it to reach invariant train tracks?

Let β = σ1σ
−1
2 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2σ1σ
−1
2

e1 → e1 + e2 + e3

e2 → e1

e3 → e2 + e3 + e4

e4 → e1 + e3 + e4



How fast is it to reach invariant train tracks?

Let β = σ1σ
−1
2 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

τ f (τ)

e1

e2

e3

e4

v1 v1v2 v2σ1σ
−1
2

T =









1 1 1 0
1 0 0 0
1 0 1 1
0 1 1 1









, λ ≈ 2.618



How fast is it to reach invariant train tracks?

Let β = σ1σ1σ1σ
−1
2 σ−1

1 σ−1
1 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

e1

e2

e3

e4

v1
v2

β

But τ is not invariant.



How fast is it to reach invariant train tracks?

Let β = σ1σ1σ1σ
−1
2 σ−1

1 σ−1
1 .

◮ Take a curve.

◮ It takes at most 2 iterations to reach τ which carries (Fu , µu).

e1

e2

e3

e4

v1
v2

β

Solution: Split β(τ), apply the same splitting sequence to τ and
compute how it is carried.



How fast is it to reach invariant train tracks?
A splitting sequence for β(τ):

e1

σ1

split

split

isotopy

σ1σ1σ
−1
2 σ−1

1 σ−1
1

e2

e3

e4

v1
v2
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Same splitting sequence for τ :

e1 e1

e2 e2

e3
e3

e4

e4

v1

v1
v2

v2
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Same splitting sequence for τ :

e1 e1

e2 e2

e3
e3

e4

e4

v1

v1
v2

v2

Compute the graph map and the transition matrix.

e1

e2

e3
e4



How fast is it to reach invariant train tracks?

Compute the graph map and the transition matrix.

e1

e2

e3
e4

e1 → 2e1 + e2 + e3

e2 → e2 + e3 + e4

e3 → e2

e4 → e1 + e2
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Compute the graph map and the transition matrix.

e1

e2

e3
e4

T =









2 1 1 0
0 1 1 1
0 1 0 0
1 1 0 0









, λ ≈ 2.618



How about reducibles?

Let β = σ1σ3σ1σ
−1
2 σ4σ

−1
5 σ−1

3 σ−1
1 ∈ B6.

1

3

2

1

7

4

6

4

2



How about reducibles?

Let β = σ1σ3σ1σ
−1
2 σ4σ

−1
5 σ−1

3 σ−1
1 ∈ B6.

1

3

2

1

7

4

6

4

2

f (τ) is not invariant.
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How about reducibles?

Let β = σ1σ3σ1σ
−1
2 σ4σ

−1
5 σ−1

3 σ−1
1 ∈ B6.

1

3

2

1

7

4

6

4

2

Reducing curves and partial pseudo-Anosovs appear after natural
splitting sequence.
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How about reducibles?

Let β = σ1σ3σ1σ
−1
2 σ4σ

−1
5 σ−1

3 σ−1
1 ∈ B6.

1

3

2

1

7

4

6

4

2

Work under progress.
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