Fast Nielsen–Thurston Classification

Öykü Yurttaş

Dicle University

joint w/ Dan Margalit, Balázs Strenner and Sam Taylor

Algorithms in Complex Dynamics and Mapping Class Groups ICERM November 2, 2019

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Any $[f] \in MCG(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Any $[f] \in MCG(S)$ has a representative which is either

- 1. **periodic**: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any $[f] \in MCG(S)$ has a representative which is either

- 1. **periodic**: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any $[f] \in MCG(S)$ has a representative which is either

- 1. **periodic**: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s})=(\mathcal{F}^{s},(1/\lambda)\mu^{s})$$

 $f(\mathcal{F}^{u},\mu^{u})=(\mathcal{F}^{u},\lambda\mu^{u})$

Any $[f] \in MCG(S)$ has a representative which is either

- 1. **periodic**: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any $[f] \in MCG(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. **reducible**: $\phi(C) = C$ for some 1-submanifold C, or
- 3. pseudo-Anosov: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

Any $[f] \in MCG(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. **pseudo-Anosov**: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any $[f] \in MCG(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. **pseudo-Anosov**: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any $[f] \in MCG(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. **pseudo-Anosov**: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

Any $[f] \in \mathsf{MCG}(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. **pseudo-Anosov**: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Any $[f] \in \mathsf{MCG}(S)$ has a representative which is either

- 1. periodic: $\phi^n = \text{id for some } n \neq 0$, or
- 2. reducible: $\phi(C) = C$ for some 1-submanifold C, or
- 3. **pseudo-Anosov**: these exists two transverse measured foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) and a number $\lambda > 1$

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},(1/\lambda)\mu^{s})$$
$$f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},\lambda\mu^{u})$$

Nielsen–Thurston Classification Problem Given $[f] \in MCG(S)$ determine its Nielsen–Thurston type and,

- ★ if periodic: find its order,
- * if reducible: find its reducing curves,
- \star if pseudo-Anosov: find $(\mathcal{F}^{s}, \mu^{s})$, $(\mathcal{F}^{u}, \mu^{u})$ and $\lambda > 1$.

History

Higher genus surfaces

- * Thurston (1970's)& Mosher (1982): exponential.
- * Bestvina-Handel (1995): exponential, implemented by Toby Hall for D_n and Peter Brinkman for higher genus surfaces.
- * Hamidi–Tehrani–Chen (1996): exponential.
- * Koberda–Mangahas (2014): exponential.
- * Bell–Webb (2016): NP and co–NP.

Braids

- * Los (1993): quadratic.
- ★ Bernadete-Gutierrez–Nitecki (1995), Calvez (2013): quadratic time algorithm, Garside structure of *B_n* is used.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main Theorem

Theorem in progress (Margalit–Taylor–Strenner–Y.) There exists a quadratic time algorithm to solve the Nielsen–Thurston classification problem.

Theorem (Bell–Webb)

Polynomial time algorithm to determine the Nielsen–Thurston classification type and find reducing curves, order and translation length in the curve complex.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Throughout the talk we work on D_n .

The results apply to any surface.

Throughout the talk standard train tracks will be used.

* A measured train track is assigned with a transverse measure $\mu \in \mathcal{W}(\tau)$:

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

C and \mathcal{F} can smoothly be embedded inside $\mathcal{N}(\tau)$:

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

 $\mathcal{MF}(\tau) \to \mathcal{W}(\tau)$ is a homeomorphism.

Throughout the talk standard train tracks will be used.

 \star Curves/measured foliations are carried by τ if they arise from some transverse measure on τ :

Train tracks define charts on \mathcal{MF} and \mathcal{PMF} .

Throughout the talk standard train tracks will be used.

 \star Train tracks define charts on \mathcal{MF} and $\mathcal{PMF}.$

Throughout the talk standard train tracks will be used.

* Similar definition when a train track is carried by another train track:

 $\sigma \prec \tau$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Throughout the talk standard train tracks will be used.

* τ is invariant if $f(\tau) \prec \tau$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Throughout the talk standard train tracks will be used.

*
$$\mathcal{W}(f(\tau)) \subseteq \mathcal{W}(\tau).$$

Throughout the talk standard train tracks will be used.

* By Brouwer Fixed Point Theorem f has a fixed point in $\mathcal{W}(\tau)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Throughout the talk standard train tracks will be used.

 \star One way to create σ carried by τ is to split $\tau {:}$

Throughout the talk standard train tracks will be used.

 \star One way to create σ carried by τ is to split τ :

(日)

Charts on \mathcal{PMF}

MCG induce piecewise linear action on PMF.

Piecewise Linear Action on \mathcal{PMF}

Piecewise Linear Action on \mathcal{PMF}

▶ If *x* < *y*

Piecewise Linear Action on \mathcal{PMF}

▶ If *x* < *y*

▶ If *x* < *y*

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

▶ If *x* < *y*

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• If x < y the blue chart is mapped back to itself.

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

▶ **If** *x* > *y*

▲□▶▲□▶▲□▶▲□▶ □ の�?

► If *x* > *y*

► If *x* > *y*

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

If x > y

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▶ **If** *x* > *y*

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

▶ If *x* > *y*

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▶ If *x* > *y*

▶ If *x* > *y*

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▶ If *x* > *y*

▲ロト▲樹ト★臣ト★臣ト 臣 のへぐ

• If x > y the blue chart is mapped to the purple chart.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

 \mathcal{MCG} induce piecewise linear action on \mathcal{PMF} .

ヘロト 人間 と 人 ヨ と 人 ヨ と

э.

 \mathcal{MCG} induce piecewise linear action on $\mathcal{PMF}.$

イロト イポト イヨト

3

Action of a pseudo-Anosov mapping class on \mathcal{PMF} .

 $M_1 \rightarrow P \rightarrow Y \widehat{\rightarrow}, M_3 \rightarrow K \rightarrow Y \widehat{\rightarrow}, M_2 \rightarrow M$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Dynnikov's coordinates

Other coordinates could also be used.

 $M_1 \rightarrow P \rightarrow Y \supsetneq, M_3 \rightarrow K \rightarrow Y \supsetneq, M_2 \rightarrow M$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Thurston)

 \mathcal{PMF} has PIP structure (that is, locally described by integer matrices).

э

Theorem (Thurston)

A pseudo-Anosov mapping class [f] has two fixed points, and both lie on \mathcal{PMF} : $[\mathcal{F}^u, \mu^u]$ and $[\mathcal{F}^s, \mu^s]$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Theorem (Thurston)

Every point (other than $[\mathcal{F}^s, \mu^s]$) converges to $[\mathcal{F}^u, \mu^u]$ on \mathcal{PMF} under [f].

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

Goal

Compute the attracting linear region on \mathcal{PMF} , the piece which contains $[\mathcal{F}^u, \mu^u]$ and on which [f] acts linearly.

▲ロト▲聞ト▲臣ト▲臣ト 臣 のQで

Goal

Compute the attracting matrix, the matrix acting on the attracting linear region.

■▶ ■ のへの

Goal

The way we actually find such attracting regions is to find an invariant train track.

Approach Use iteration.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

How fast is it to reach attracting linear pieces?

Thurston : "Every other point...tends rather quickly toward the attracting point under iteration..."

Experiment results from Toby Hall's dynn.exe program $(\bigcirc) (\odot) (\odot) (\odot) (\bigcirc) (\odot)$

How fast is it to reach attracting linear pieces?

Thurston : "Every other point...tends rather quickly toward the attracting point under iteration..."

Example Take

 $\beta = \sigma_1^{-1} \sigma_2^{-3} \sigma_3^{-5} \sigma_1^4 \sigma_2^{-2} \sigma_3^{-1} \sigma_1 \sigma_2 \sigma_3^{-2} (\sigma_2 \sigma_3^{-2})^{19} \sigma_1^{-8} \sigma_3^{-1} \sigma_1^{-2} \sigma_2^2 \sigma_3^{-1} \sigma_1^{-1} \sigma_2 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_3^{-1} \sigma_3^{-1}$

with $\lambda \approx 8.6 \times 10^{14}$.

- Train track program stops working.
- Attracting matrix is found in 0.001 seconds.

Γ	-68900596045753	200002959211464	146825523685804	-943752747512	٦
	-181490417757959	526825930446403	386751743244292	-2485930314639	
	-188609831321041	547491989409364	401923043417627	-2583447121425	
L	76020009608848	-220669018174468	-161996823859176	1041269554295	

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve *c*. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some *i*, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve *c*. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some *i*, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve *c*. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some *i*, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve c. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some i, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve *c*. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some *i*, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve *c*. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some *i*, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem (Margalit–Taylor–Strenner–Y.)

Fix some family of standard train tracks $\{T_i\}$ and a curve c. Given a pA mapping class [f] there is an invariant train track τ such that $\star \tau \prec T_i$ for some i, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f] be a pA mapping class. There is a constant $1 \leq Q \leq (constant)|\chi(S)|^2$ such that if T is any train track with $(\mathcal{F}^u, \mu^u) \prec T$ and $slope(c) \approx slope(T)$ there is an invariant train track τ such that

- $\star \tau \prec T$, and
- * $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f] be a pA mapping class. There is a constant $1 \leq Q \leq (constant)|\chi(S)|^2$ such that if T is any train track with $(\mathcal{F}^u, \mu^u) \prec T$ and $\operatorname{slope}(c) \approx \operatorname{slope}(T)$ there is an invariant train track τ such that

 $\star \tau \prec T$, and

* $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Proof. Key idea: "Slope of a curve" → range of slopes of saddle connections when pulled tight in the flat structure.

Theorem (Margalit–Taylor–Strenner–Y.)

Let [f] be a pA mapping class. There is a constant $1 \leq Q \leq (constant)|\chi(S)|^2$ such that if T is any train track with $(\mathcal{F}^u, \mu^u) \prec T$ and $\operatorname{slope}(c) \approx \operatorname{slope}(T)$ there is an invariant train track τ such that

- $\star \tau \prec T$, and
- * $f^{Q}(c) \prec \tau$ for some $1 \leq Q \leq (constant)|\chi(S)|^{2}$ (up to diagonal extension).

Proof. Key idea: "Slope of a curve" \rightsquigarrow range of slopes of saddle connections when pulled tight in the flat structure.

F1. slope(
$$f^k(c)$$
) = λ^{-2k} slope(c)

F2. If $\mathcal{F}^u \prec \tau$ and slope $(c) \ll \text{slope}(\tau)$, then $c \prec \tau$ (up to diagonal extension).

Agol cycle: If $(\mathcal{F}^u, \mu^u) \prec \tau_0$ and $\tau_0 \rightharpoonup \tau_1 \rightharpoonup \tau_2 \cdots$ is a maximal splitting sequence, then $\lambda \tau_{n+m} = f(\tau_n)$ for some n, m.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

So τ_0 splits to Agol cyle.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We use natural splitting sequences associated to *f*:

Apply the generators one by one and split after each generator until the image train track is standard.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\tau_0 \rightharpoonup \cdots \tau_n$ has length O(n), $f(\tau_n)$ is carried by a standard train track and $f^Q(c) \prec \tau_n$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 τ_n may not be invariant because of oversplitting.

・ロト ・四ト ・ヨト ・ヨト

æ

Fold τ_n until possible which gives τ' .

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

 τ' is an invariant train track for f.

- Let $\beta = \sigma_1 \sigma_2^{-1}$.
 - Take a curve.
 - lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

 $M_1 \rightarrow P \rightarrow Y \supsetneq, M_3 \rightarrow K \rightarrow Y \supsetneq, M_2 \rightarrow M$

Let $\beta = \sigma_1 \sigma_2^{-1}$.

Take a curve.

lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Let $\beta = \sigma_1 \sigma_2^{-1}$.

Take a curve.

lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

 $e_1 \longrightarrow e_1 + e_2 + e_3$ $e_2 \longrightarrow e_1$ $e_3 \longrightarrow e_2 + e_3 + e_4$ $e_4 \longrightarrow e_1 + e_3 + e_4$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\beta = \sigma_1 \sigma_2^{-1}$.

Take a curve.

lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Let
$$\beta = \sigma_1 \sigma_1 \sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_1^{-1}$$
.

Take a curve.

lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

But τ is not invariant.

Let
$$\beta = \sigma_1 \sigma_1 \sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_1^{-1}$$
.

Take a curve.

lt takes at most 2 iterations to reach τ which carries (\mathcal{F}^u, μ^u) .

Solution: Split $\beta(\tau)$, apply the same splitting sequence to τ and compute how it is carried.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

How fast is it to reach invariant train tracks? A splitting sequence for $\beta(\tau)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Same splitting sequence for τ :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Same splitting sequence for τ :

Compute the graph map and the transition matrix.

- 34

Compute the graph map and the transition matrix.

 $e_{1} \rightarrow 2e_{1} + e_{2} + e_{3}$ $e_{2} \rightarrow e_{2} + e_{3} + e_{4}$ $e_{3} \rightarrow e_{2}$ $e_{4} \rightarrow e_{1} + e_{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Compute the graph map and the transition matrix.

$$T=\left(egin{array}{ccccc} 2 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \end{array}
ight), ~~\lambdapprox 2.618$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let $\beta = \sigma_1 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_4 \sigma_5^{-1} \sigma_3^{-1} \sigma_1^{-1} \in B_6.$

Let $\beta = \sigma_1 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_4 \sigma_5^{-1} \sigma_3^{-1} \sigma_1^{-1} \in B_6.$

 $f(\tau)$ is not invariant.

- 34

Let $\beta = \sigma_1 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_4 \sigma_5^{-1} \sigma_3^{-1} \sigma_1^{-1} \in B_6.$

Reducing curves and partial pseudo-Anosovs appear after natural splitting sequence.

- 34

Let $\beta = \sigma_1 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_4 \sigma_5^{-1} \sigma_3^{-1} \sigma_1^{-1} \in B_6.$

Work under progress.

(日) (日) (日) (日) (日)

э